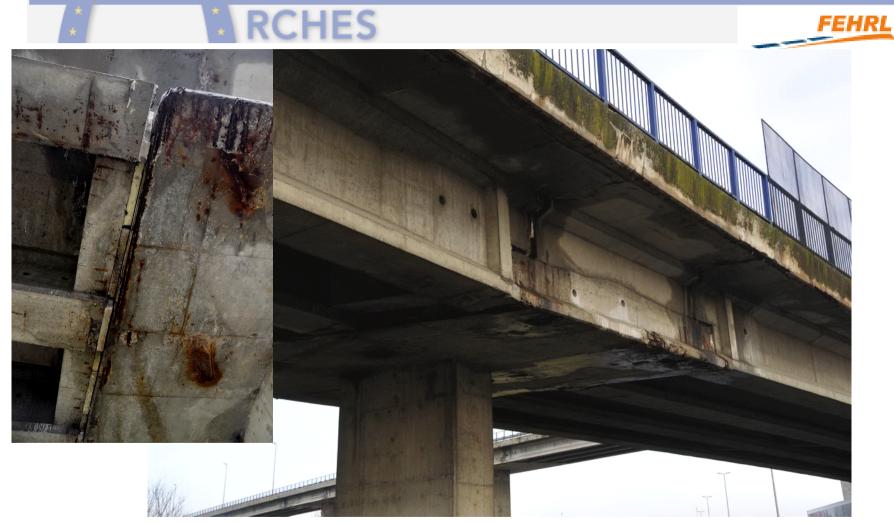


Cathodic Protection for extending the life of concrete bridges

Prof. Rob B. Polder
TNO, TUDelft, The Netherlands

RCHES

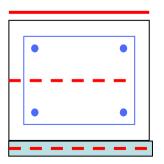
- Corrosion of reinforcement due to chloride (de-icing, sea) → serviceability, ...safety
- Intervention options
 - Do nothing
 - (Conventional) Repair
 - quick&dirty (short life!)
 - full, thorough
 - Cathodic Protection, CP (repair)
 - Replace structure (element)



Croatia European Highway Structures

CP in a nutshell

- Stops corrosion (electrochemical process)
- Needs low V DC power, "anode" material on surface, circuit (cables, steel, concrete)
- Test proves corrosion absent, 2 4 / year
- Life (NL ~125) 90% > 13 y; titanium > 25 y
- Costs less over total bridge life...
- Causes lower out-of-service time...
- ..than conventional repair



Design of CP

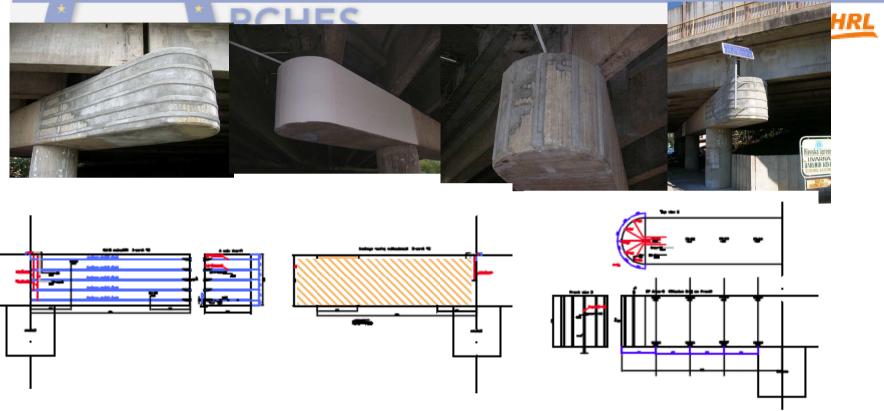
- Check safety (CP =/= structural)
- Locate corrosion & damage
- Check continuity (steel, concrete)
- Choose anode location & material
- If critical: model performance
 - conductive coatingtitanium mesh,strip, shotcrete

Prepared surface, titanium mesh, shotcrete

Assessment and Rehabilitation of Central European Highway Structures

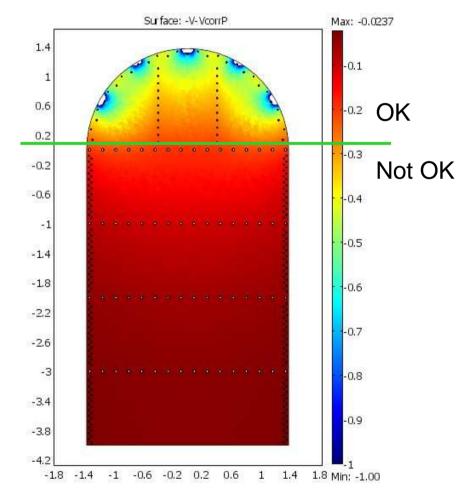
RCHES

CP trial Slovenia


Repair work (quick & dirty = OK!)

CP trial SLO, 3 test areas

- test different anode materials & configurations
- check with FE modelling



FE model CP SLO Ighway Structures

FEHRL

- Geometry, steel
- Parameters
- 2-D model
- Voltage, resistivity
- *Output I,E (x,y)*
- Agreement OK

Life cycle cost

- CP trial SLO (150 m²)
- Input
 - full repair 540 €/m²
 - CP 405 €/m² + engineering 16 k€ + 1000 €/year
- Output: CP saves 7000 € until year 13
- CP, Repair: maintenance after 13 years?
- Probability of failure: CP 10%; repair >50%?

Conclusions Assessment and Rehabilitation

- CP proven technique: corrosion is stopped
- More effective than conventional repair
- Prolongs lifetime of repair works
- Lifetime > 10 .. 25+ year
- Flexible design & materials and components
- Modelling beneficial in critical (slender) cases

RCHES

- Advantages of CP
- Less demolition (out-of-traffic, waste)
- Reliable & safe
- Lower maintenance costs
 - cheaper than replacement
 - more durable than conventional repair
- See ARCHES Guideline (soon)

